Genic incompatibilities in two hybrid bacteriophages.

نویسندگان

  • Darin R Rokyta
  • Holly A Wichman
چکیده

Horizontal gene transfer and recombination play a major role in microbial evolution and have been detected in diverse groups, including many of medical relevance such as HIV and dengue virus. In the absence of mechanistic barriers, the evolutionary success of a particular recombination event is determined by whether the recombinant genotype suffers a fitness cost through the disruption of favorable epistatic interactions within the genome, and if so, the extent to which this fitness cost might be mitigated by subsequent compensatory evolution. To investigate the importance of epistatic interactions between genes and the evolutionary viability of a homologous recombination event between diverged ancestral genotypes, we constructed two recombinant microvirid bacteriophages by exchanging their alleles of the gene encoding the coat protein. The coding sequences for this gene differ by approximately 8% at the amino acid level and were interchanged between two ancestral phages related to varphiX174 and well adapted to their culture conditions. Because the recombinant phages showed drastically reduced fitnesses, we further explored their evolutionary viability by subjecting replicate lines of each of them to selection. We found that all four lineages achieved fitnesses commensurate with ancestral fitnesses in as few as 60 generations, and on average, the first substitution accounted for more than half of the total fitness recovery. Fitness recovery required three to five substitutions in each lineage, and overall eight of the nine essential phage genes were involved, suggesting extensive epistatic interactions throughout the genome. Interestingly, the proteins with the most extensive and apparent physical interactions with the exchanged protein in the viral capsid did not appear to have much of a role in fitness recovery. This result appears to be a consequence of the conservation of the amino acid residues involved in the interactions. It suggests that strong epistatic interactions are less important than weaker, transient ones in producing genic incompatibilities because they preclude variability in the interacting regions of the proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The population genetics of speciation: the evolution of hybrid incompatibilities.

Speciation often results from the accumulation of "complementary genes," i.e., from genes that, while having no deleterious effect within species, cause inviability or sterility when brought together with genes from another species. Here I model speciation as the accumulation of genic incompatibilities between diverging populations. Several results are obtained. First, and most important, the n...

متن کامل

Cytonuclear genic incompatibilities cause increased mortality in male F2 hybrids of Nasonia giraulti and N. vitripennis.

The haplodiploid wasp genus Nasonia is a promising model for studying the evolution of genic incompatibilities due to the existence of interfertile species and haploid males. The latter allows for significantly reducing the sample size required to detect and map recessive dysfunctional genic interactions. We exploited these features to study the genetics of intrinsic hybrid inviability in male ...

متن کامل

Temperature stress increases hybrid incompatibilities in the parasitic wasp genus Nasonia.

Hybrid incompatibilities, measured as mortality and sterility, are caused by the disruption of gene interactions. They are important post-zygotic isolation barriers to species hybridization, and much effort is put into the discovery of the genes underlying these incompatibilities. In hybridization studies of the haplodiploid parasitic wasp genus Nasonia, genic incompatibilities have been shown ...

متن کامل

Investigating incipient speciation in Arabidopsis lyrata from patterns of transmission ratio distortion.

Our understanding of the development of intrinsic reproductive isolation is still largely based on theoretical models and thorough empirical studies on a small number of species. Theory suggests that reproductive isolation develops through accumulation of epistatic genic incompatibilities, also known as Bateson-Dobzhansky-Muller (BDM) incompatibilities. We can detect these from marker transmiss...

متن کامل

Signatures of reproductive isolation in patterns of single nucleotide diversity across inbred strains of mice.

Reproductive isolation is often caused by the disruption of genic interactions that evolve in geographically separate populations. Identifying the genomic regions and genes involved in these interactions, known as "Dobzhansky-Muller incompatibilities," can be challenging but is facilitated by the wealth of genetic markers now available in model systems. In recent years, the complete genome sequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 26 12  شماره 

صفحات  -

تاریخ انتشار 2009